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NONLINEAR MODEL OF THE INTERACTION OF CRYOAGENT FLOWS 

IN HEAT EXCHANGERS 
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UDC 621.594-71.045 

A nonlinear analytical model of a two-flow heat exchanger is developed, ensuring 
high accuracy and speed, and universal indexing of the initial temperatures and 
eliminating degeneration of the heat transfer. 

In investigating the cooling and heatingh of cryogenic systems, and in describing various 
transient conditions of quasistatic type, there arises the problem of correctly determining 
the functional relations between the limiting temperature of a two-flow heat exchanger. 

Traditional methods of solving steady-heat-transfer problems reduce, as a rule, to two 
schemes. According to the first, the initial heat-transfer equations are integrated under 
the assumption of constant properties and parameters of the heat-carrier interaction. The 
limiting temperatures obtained here allow the mean values of the corresponding "constants" 
to be refined, after which the desired temperature values are redefined, and so on (linear- 
averaged model) [i, 2]. In practice, this scheme is a multistep iterative process. 

The second calculation scheme reduces to direct integration of the heat-transfer equa- 
tions on a computer, automatically taking account of the change in the coefficients at each 
step. The initial temperatures are specified here at one end of the heat exchanger. 

Recently, combined calculation schemes have also appeared [3]; in these schemes, some 
of the deficiencies of linear models are eliminated in a narrow parameter range close to 
nominal conditions, as calculated by numerical integration. 

Analysis of these methods leads to the conclusion that calculation by the first is faster 
than calculation by the second and is more flexible from the viewpoint of the possibility of 
determining an arbitrary pair of limiting temperatures. This is often decisive in the choice 
of an algorithm for investigating systems with parallel and series combinations of heat ex- 
changers. However, the artificial linearization of the distributed parameters in the first 
method may lead to fundamentally incorrect solutions. This is associated with the possible 
disregard of those regions of the heat exchanger where nonlinearity of the thermophysical 
properties of the flows may lead to intersection of the temperature profiles, which would 
mean that the intermediate temperature differences vanish. In reality (if the influence 
of hydrayulic losses, external heat sources, and heat conduction is neglected), such degener- 
acy cannot occur. This physically impermissible phenomenon may be eliminated by developing 
a nonlinear model of heat transfer. In addition, it must be emphasized that the nonlinear 
terms of the equations describing processes in heat exchangers for the low-temperature region 
(T - 20-4.5 K) amount to tens of percent with respect to the linear terms, which also points 
to a need to develop a nonlinear theory of heat transfer. 

Consider an initial system of steady equations of a two-flow heat exchanger, omitting 
the terms due to hydraulic losses, external heat sources, and heat conduction. The calculation 
of each of these factors falls outside the scope of the present work and may be accomplished 
by classical methods. The influence of these factors on the heat transfer is assumed to 
be small, and is easily taken into account by perturbation theory [i, 2] for the solution 
given below, which is expediently interpreted as the nonlinear zero approximation. Thus, 
fixing the flow rates and mean pressure in each flow for steady conditions, it is found that 
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Fig. i. Indexing of the boundary points 
and flows in a heat exchanger. 

G8 clh, _ O R  dhR = kF(T  R -  T.): (1 )  
dx dx 

Analysis of the temperature-enthalpy curves of the coolant T(h) shows that, to achieve 
reasonable accuracy (<1%), it is quite adequate to limit consideration to the third order 
of the polynomial approximation of the thermophysical properties, even close to the phase- 
transition point. The description of the cubic curve requires, as is known, the specifica- 
tion of four characteristic parameters. In choosing these parameters it must be taken into 
account that each call of the subprogram for finding the thermodynamic properties of the 
coolants allows both h(T) and Cp(T) to be found (at fixed pressure) simultaneously, practi- 
cally without losss of machine time. Thus, the required cubic function T(h) of each flow 
may be constructed from two points (the inlet and outlet), giving the desired four-parameter 
set. The use of this set is very expedient, both in computational terms and in terms of 
machine-time economy. As may readily be shown here 

T(h)  = Tra + ( a -  b-}- c ) ( h -  hra) + ( b "  3c) ( h -  hm) ~ + 2c ( h -  h,n) 8 (2) 
- ( h .  - hm)  ( h .  - h . , ) ~ '  

where the subscripts m and n correspond to the two reference points of the heat exchanger (i, 
2 in the forward flow or 3, 4 in the backward flow; Fig. i); a characterizes the linear proper- 
ties of the curve, b characterizes the parabolic deviations from linearity, and c character- 
izes the cubic deviations from parabolic form 

" '  : : = - -  n ' ; C : : - -  "~- - - a .  h~ -- h m 2 , Cp C~ , 2 

The s u b s e q u e n t  i n t e g r a t i o n  o f  Eq. (1 )  r e q u i r e s  a d d i n g  t h e  s p e c i f i c  fo rm o f  k ( T )  t o  t h e  
chosen  a p p r o x i m a t i o n  o f  t h e  p r o p e r t i e s  T ( h ) .  I n  t h e  g e n e r a l  c a s e ,  k i s  d e t e r m i n e d  n o t  o n l y  
by t h e  t e m p e r a t u r e s  b u t  a l s o  by  t h e  p r e s s u r e s  and f l o w  r a t e s  o f  t h e  c o o l a n t s  [ 4 ] .  However ,  
in  t h e  g i v e n  s t a t i c  c o n d i t i o n s  (G = c o n s t ) ,  w i t h  s m a l l  h y d r a u l i c  l o s s e s ,  t h e  o n l y  q u a n t i t i e s  
which  a r e  c h a n g i n g  m a r k e d l y  a r e  t h e  t e m p e r a t u r e s .  Thus ,  t h e  d e p e n d e n c e  o f  k on t i m  f l o w  r a t e s  
and p r e s s u r e s  i s  t h e n  t a k e n  i n t o  a c c o u n t  p a r a m e t r i c a l l y  r a t h e r  t h a n  f u n c t i o n a l l y .  E s t i m a t e s  
o f  t h e  c h a r a c t e r  o f  t h e  d e p e n d e n c e s  k ( T ( h ) )  f o r  t y p i c a l  c r y o g e n i c - s y s t e m  h e a t  e x c h a n g e r s  show 
t h a t ,  w i t h i n  t h e  l i m i t s  o f  r e a s o n a b l e  a c c u r a c y  (<1%),  t h e  p a r a b o l i c  a p p r o x i m a t i o n  o f  t h e  c o r -  
r e s p o n d i n g  c u r v e s  i s  s u f f i c i e n t .  

T a k i n g  a c c o u n t  o f  t h i s ,  a f t e r  i n t r o d u c i n g  t h e  new v a r i a b l e  ~ = (h  s - h l ) / ( h  2 - h 1) = 
(h R - h~)/(h 3 - h4) and the approximation (kf) -I = A + (4B - 3A - C)~ + 2(A + C - 2B)~ a, inte- 
grating Eq. (I) leads to two algebraic equations 

where 

6~ (h~--ih,)  = ~ (h~- -h . ) ,  

d~ [A -F (4B - -  3A - -  C) ~ + 2 (A -t- C - -  2B) ~] 

Z--~ ( U - - V @ W ) ~ @ ( V - - a W ) ~ - ~ - 2 W ~  3 
= 1 ,  

(3) 

(4) 

Z =  T 1 - - T ~  ,; U =  T ~ - - T ~  T a - - T ~  
Gs (h I __ he) G R (h~ - -  h3) G s (h 1 - -  h2) 

- - .  T W 2 C~ 

; v =  - 2  

Cp4 ----~-~ ~Cp § ~ - - U ;  A = (kF)-'lg=o; 

1) 1(, #)], - 

-11~= 1 ; C == (kF)-llg=l. B = (kP) Y 
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Fig. 2. Form of the function f(~), characterizing 
the influence of cubic properties of the coolants 
(continuous curve) and the parabolic approximation 
(dashed curve). 

Then ~ = 0 corresponds to T s = Tz; T R = T~; $ = i to T s = T2, TR = T3; and $ = 1/2 to T s = 
Ts[(h I + h2)/2], T R = TR[(h 3 + h~)/2]. Within the framework of the cubic approximation, Eq. 
(2) readily yields the result 

1 ~ " ICL " T ~=T 2 8 C~ Cp 

In  a n a l y z i n g  Eq. ( 4 ) ,  n o t e  t h a t  t h e  d e n o m i n a t o r  o f  t h e  i n t e g r a n d ,  which i s  c u b i c  in  ~, 
i s  p r o p o r t i o n a l  t o  t h e  c u r r e n t  t e m p e r a t u r e  d i f f e r e n c e  T R - T  s .  Hence ,  i t  i s  c l e a r  t h a t  t h e  
p o s s i b i l i t y  t h a t  t h e  g i v e n  c u b i c  c u r v e  goes  t o  z e r o  more t h a n  once  c o r r e s p o n d s  t o  t h e  above -  
d i s c u s s e d  s i t u a t i o n  o f  t h e  " d e g e n e r a c y "  o f  h e a t  t r a n s f e r .  The i m p e r m i s s i b i l i t y  o f  t h e  a p p e a r -  
ance  o f  z e r o s  in  t h e  d e n o m i n a t o r  o f  Eq. ( 4 )  imposes  c o n s t r a i n t s  on t h e  minimum p o s s i b l e  v a l u e s  
of the underrecuperation T I - T~ and T 2 - T3, which automatically transfers the subsequent 
iterative process to the real range of desired temperatures. 

It is also expedient to isolate the role of the parameters V and W, which are used, to- 
gether with the inequalities A # B # C, for nonlinear correction of the functional relation 
between the limiting temperatures. In fact, when V = W = 0, and also A = B = C, Eqs. (3) 
and (4) are transformed after integration to the relations characteristic of linear theory 
[2]. 

The algorithm for solving Eqs. (3) and (4) reduces to the following: with two specified 
values of the boundary temperatures, the third point is selected from Eq. (4) and the fourth 
point required to make Eq. (4) specific is determined at each step from the enthalpy-balance 
Eq. (3). Thus, the given problem of searching for any pair of limiting temperatures in fact 
reduces to analytical integration of Eq. (4) and subsequent solution of a single transcen- 
dental equation with one unknown temperature. 

Note that using a third-order polynomial in the determinant of the integrand in Eq. (4) 
leads to explicit overcomplication of the analytical form of the integral. However, discard- 
ing the cubic terms may entail considerable loss of accuracy. This dilemma may be resolved by 
noting that the cubic terms which are of interest here (the terms proportional to W) form the 
combination Wf($) in the denominator of Eq. (4), where f($) = 253 - 3$ 2 + $. The form of 
this function (Fig. 2) clearly demonstrates the possibility of sufficiently accurate approxi- 
mation by two parabolas, the coefficients of which are obtained by the least-squares method, 
fixing the values f]$=0 = fI$=I = 0 

5 3 4 _-~ +-~ ~h~n 0 < ~ < ~ ,  

5 ~2 38 1 
- ~  - -  1-'-~ ~ +  1513 w i a e n - - < ~ 1 . 2  

The error of the final result due to this substitution is no more than 1%. With the same 
accuracy, the numerator of the integrand in Eq. (4) may be expediently replaced by a piecewise- 
linear function 
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Fig .  3. Dependence of  the  u n d e r r e c u p e r a t i o n  (Tz - T 4) 
on the temperature difference (T z - T 3) in a heat ex- 
changer at different levels of the mean temperature 
T c = (T z + T3)/2: a) T c = 7 K; b) i0 K. 

l A-~- ~ ( ~ - - A ) ~  when 0<~<-~, 

(2B -- C) -- 2 (C -- B) ~ ,men __I ~<~<i. 
2 

As a result of these manipulations, the integral in Eq. (4) may be written in the form 
of a combination 

where 

v s 4 w 
~= W,  ~=U--V + 5 , 7 = 2 Z ;  

2 6 

V __5 w 
g=T + 6 ' 

Thus, the problem of integrating Eq. 

( 4) v+v+-flv, 
(4) reduces to calculating the simpler integrals o 0 and 

ol, the analytical form of which is easily determined from tables 

' ~"~ (5) ~n (=, 8, ~) 

The relations obtained above allow a program for computer calculation of the temperature 
operating conditions of heat exchangers to be developed, while satisfying two conflicting 
requirements: I) high accuracy; 2) high speed. The results of using the nonlinear analytical 
model (curve I), the linear model (curve 2), and the traditional model of direct numerical 
integration of Eq. (i), dividing the heat exchanger into M steps (curves 3 and 4), are com- 
pared in Fig. 3. A real heat exchanger of a cryogenic system, in which the flow rates of 
pressure of both coolant (helium) flows are fixed, is considered here. Figures 3a and 3b 
each correspond to a definite level of the mean temperature T c = (T I + Ta)/2 ; the curves also 
show the dependence of the underrecuperation T z - T 4 as a function of the total temperature 
difference T I - T a. 

It is important to note that, with increase in the number of steps M to a few hundred, 
the direct-integration scheme (a particular kind of test) leads to practical superposition 
of the corresponding curves (M = 200, 500) into curve 1 (not shown in Fig. 3, for the sake 
of simplicity). In particular, this allows high accuracy of the given nonlinear model to 
be guaranteed, and reliably demonstrates how much this model differs from step schemes (with 
a small number of divisions M) and linear methods (curve 2), which clearly do not meet current 
requirements. 

To compare the speed of calculations by numerical and analytical schemes, note that cal- 
culation algorithms require, as a rule, the specification of the input temperatures (i.e., 
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for a heat exchanger, points i and 3; Fig. i), and consequently the step-integration scheme 
(with i, 4 or 2, 3 as the initial points) entail 15-20 repetitions of this procedure (de- 
pending on the accuracy desired) in order to select one of the points (i or 3). The uni- 
versality of the nonlinear model with respect to the indexing of the initial points, by con- 
trast, does not require a double iterative process, and the time for the corresponding cal- 
culation is equivalent to a process which division into no more than 3 steps. Thus, the non- 
linear analytical model permits an increase in speed by 2-3 orders of magnitude in comparison 
with the step-integration scheme, thereby guaranteeing an accurate result, within the limits 
of correctness of the information on the initial parameters. 

The nonlinear model of heat transfer here developed is sufficiently universal, and covers 
various types of heat exchangers. In particular, the problem of calculating single-flow heat 
exchangers in which the backward-flow function corresponds to the surrounding medium, i.e., 
T 4 = T3, reduces to the integral in Eq. (4); in this case all the terms associated with points 
3 and 4 in Eq. (4) must be omitted, formally letting G R + =. Heat exchangers of immersional 
type (nitrogen, helium baths) are described analogously, under the condition of sufficiently 
large heat-transfer coefficients from the boiling liquid. 

NOTATION 

G, coolant flow rate, kg/sec; T, current temperature, K; h, specific enthalpy, J/kg; Cp, 
isobaric specific heat, J/kg.K; k, local heat-transfer coefficient, W/m2.K; F, heat-transfer 
surface, m2; x, dimensionless coordinate varying from 0 at one end of the heat exchanger 
(points i and 4) to I at the other end (points 2 and 3; Fig. i): Indices: S, forward flow 
(input, point i; output, point 2); R, backward flow (input, point 3; output, point 4). 

. 

2. 

3. 
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